Count time series prediction using particle filters
نویسندگان
چکیده
منابع مشابه
Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series
The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملTidal prediction using time series analysis of Buoy observations
Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملCount Time Series Models
We review regression models for count time series. We discuss the approach which is based on generalized linear models and the class of integer autoregressive processes. The generalized linear models framework provides convenient tools for implementing model fitting and prediction using standard software. Furthermore, this approach provides a natural extension to the traditional ARMA methodolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quality and Reliability Engineering International
سال: 2019
ISSN: 0748-8017,1099-1638
DOI: 10.1002/qre.2534